We have measured variables, what should we adjust for?
exposure | outcome | covariate |
---|---|---|
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. | . | . |
. | . | . |
. | . | . |
0.55 | -1.73 | -2.34 |
quartets
packageexposure
and covariate
: causal_collider
, causal_confounding
, causal_mediator
, causal_m_bias
exposure
and outcome
exposure
and the outcome
10:00
Data generating mechanism | Correct causal model | Correct causal effect |
---|---|---|
(1) Collider | Y ~ X | 1.0 |
(2) Confounder | Y ~ X ; Z | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total Effect: Y ~ X | Direct effect: 0.0 Total effect: 1.0 |
(4) M-Bias | Y ~ X | 1.0 |
D’Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.
Data generating mechanism | ATE not adjusting for Z | ATE adjusting for Z | Correlation of X and Z |
---|---|---|---|
(1) Collider | 1.00 | 0.55 | 0.70 |
(2) Confounder | 1.00 | 0.50 | 0.70 |
(3) Mediator | 1.00 | 0.00 | 0.70 |
(4) M-Bias | 1.00 | 0.88 | 0.70 |
D’Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.
# A tibble: 100 × 6
exposure_baseline outcome_baseline covariate_baseline
<dbl> <dbl> <dbl>
1 -1.43 0.287 -0.0963
2 0.0593 -0.978 -1.11
3 0.370 0.348 0.647
4 0.00471 0.851 0.755
5 0.340 1.94 1.19
6 -3.61 -0.235 -0.588
7 1.44 -0.827 -1.13
8 1.02 -0.0410 0.689
9 -2.43 -2.10 -1.49
10 -1.26 -2.41 -2.78
# ℹ 90 more rows
# ℹ 3 more variables: exposure_followup <dbl>,
# outcome_followup <dbl>, covariate_followup <dbl>
Time-varying data
True causal effect: 1 Estimated causal effect: 0.55
True causal effect: 1 Estimated causal effect: 1
outcome_followup ~ exposure_baseline + covariate_baseline
Data generating mechanism | ATE not adjusting for pre-exposure Z | ATE adjusting for pre-exposure Z | Correct causal effect |
---|---|---|---|
(1) Collider | 1.00 | 1.00 | 1.00 |
(2) Confounder | 1.00 | 0.50 | 0.50 |
(3) Mediator | 1.00 | 1.00 | 1.00 |
(4) M-Bias | 1.00 | 0.88 | 1.00 |
D’Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.
outcome_followup
and exposure_baseline
adjusting for covariate_baseline
: causal_collider_time
, causal_confounding_time
, causal_mediator_time
, causal_m_bias_time
10:00
Slides by Dr. Lucy D’Agostino McGowan